Friday, May 20, 2016

homework and exercises - What is the position as a function of time for a mass falling down a cycloid curve?


In the brachistochrone problem and in the tautochrone problem it is easy to see that a cycloid is the curve that satisfies both problems.


If we consider $x$ the horizontal axis and $y$ the vertical axis, then the parametric equations for a cycloid with its cusp down is:



$$\begin{cases} x=R(\theta-\sin\theta)\\ y=R(\cos\theta-1) \end{cases}$$


A cycloid is the curve of fastest descent for an idealized point-like body, starting at rest from point A and moving along the curve, without friction, under constant gravity, to a given end point B in the shortest time. A cycloid is also the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point.


We already know the parametric equations for the the geometry of the path of the mass, but I would like to know the position of the object over time. I would like to know what is the solution to the equations of motion. It would be like specifying the arc length as a function of time $s=s(t)$ in the figure:


enter image description here


To sum up, what I mean is:


Given certain initial conditions, what are the expressions $x(t)$ and $y(t)$ that give the position as a function of time $\mathbf{\bar{r}}(t)=\left ( x(t),y(t)\right )$ for a particle falling down a cycloid curve?



Answer



enter image description here 1. Brachistochrone \begin{equation} \boxed{\: \begin{matrix} x\left(\theta\right) = R\left(\theta-\sin \theta\right)\\ y\left(\theta\right) = R\left( 1-\cos \theta\right) \end{matrix}\:} \tag{b-01} \end{equation}


\begin{equation} \omega= \dfrac{\,\theta \,}{t}=\dfrac{\mathrm{d}\theta }{\mathrm{d} t}=\sqrt{\dfrac{\,g\,}{R}} =\text{constant} \tag{b-02} \end{equation}


\begin{equation} \boxed{\: \begin{matrix} & x\left(t\right) = R\Biggl[ \sqrt{\dfrac{\,g\,}{R}}\,t-\sin \left(\sqrt{\dfrac{\,g\,}{R}}\,t\right)\Biggr]=R\Bigl[\omega\,t-\sin \left(\omega\,t\right)\Bigr]\\ & \\ & y \left(t\right)= R\Biggl[1-\cos \left(\sqrt{\dfrac{\,g\,}{R}}\,t\right)\Biggr]=R\Bigl[1-\cos \left(\omega\,t\right)\Bigr] \end{matrix}\:} \tag{b-03} \end{equation}



\begin{equation} s\left(t\right)=4R\Biggl[1-\cos\left(\dfrac{\theta}{2}\right)\Biggr]=4R\Biggl[1-\cos\left(\sqrt{\dfrac{g}{4R}}\,t\right)\Biggr]=4R\Biggl[1-\cos\left(\frac{\omega}{2}\,t\right)\Biggr] \tag{b-04} \end{equation}


Time of descent from point $\mathrm{A}(0,0)$ to lowest point $\mathrm{F}(\pi\,R,2R)$: from (b-02) with $\:\theta=\pi\:$ \begin{equation} t\left[\mathrm{A}\rightarrow\mathrm{F} \right] = \pi\sqrt{\dfrac{\,R\,}{g}} \tag{b-05} \end{equation}


2. Tautochrone


enter image description here


\begin{equation} t\left[\theta_{0}\rightarrow\theta\right]=\sqrt{\dfrac{\,R\,}{g}}\Biggl(\pi-2\arcsin\Biggl[\dfrac{\cos\left(\theta/2\right)}{\cos\left(\theta_{0}/2\right)} \Biggr] \Biggr) \tag{t-01} \end{equation} Time of descent from $\:\theta_{0}\:$ to the lowest point $\:\theta=\pi\:$ : from (t-01) with $\:\theta=\pi\:$ \begin{equation} t\left[\theta_{0}\rightarrow\pi\right]=\pi\sqrt{\dfrac{\,R\,}{g}}=\text{constant independent of $\theta_{0}$.} \tag{t-02} \end{equation}


Also from (t-01)


\begin{equation} \cos\theta=\left( \dfrac{1+\cos\theta_{0}}{2}\right) \left[ 1+\cos\left(\sqrt{\dfrac{\,g\,}{R}}\,t \right) \right]-1 \tag{t-03} \end{equation}


\begin{equation} s\left(t\right)=4R\Biggl[\cos\left(\dfrac{\theta_{0}}{2}\right)-\cos\left(\dfrac{\theta}{2}\right)\Biggr]=4R\cos\left(\dfrac{\theta_{0}}{2}\right)\Biggl[1-\cos\left(\sqrt{\dfrac{g}{4R}}\,t\right)\Biggr] \tag{t-04} \end{equation}


\begin{equation} \theta\left(t\right)=\arccos\Biggl[\biggl(\dfrac{1+\cos\theta_{0}}{2}\biggr) \left[ 1+\cos\left(\sqrt{\dfrac{\,g\,}{R}}\,t \right) \right]-1\Biggr] \tag{t-05} \end{equation}


\begin{equation} x\left(t\right)=R\big[\theta\left(t\right)-\sin\theta\left(t\right)\bigr] \tag{t-06} \end{equation}



3. Cycloid(properties)


enter image description here


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...