I am looking for a exact derivation of a relation between redshift $z$ and distance $d$.
What I know is the definition $$z=\frac{\lambda_{\text{observed}}}{\lambda_{\text{unshifted}}}-1=\sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}-1$$ and that the Hubble constant $H$ as a function of $z$ is: $$H^2=H_0^2\left(\Omega_m\left(1+z\right)^3+\Omega_{\Lambda}\right)$$
How can I use this to derive the distance?
Answer
Depending on the shape of the universe the luminosity distance is given by :
\begin{equation} d_L(z) = \left\{ \begin{array}{rl} \frac{(1 + z) c}{H_0 \sqrt{|\Omega_k|}} \sin \left[ \sqrt{|\Omega_k|} \int _0 ^z \frac{dz'}{H(z')/H_0} \right] & \mbox{for $k = 1$} \\ \frac{(1 + z) c}{H_0} \int _0 ^z \frac{dz'}{H(z')/H_0} & \mbox{for $k = 0$} \\ \frac{(1 + z) c}{H_0 \sqrt{|\Omega_k|}} \sinh \left[ \sqrt{|\Omega_k|} \int _0 ^z \frac{dz'}{H(z')/H_0} \right] & \mbox{for $k = -1$} \end{array} \right. \end{equation}
No comments:
Post a Comment