Thursday, January 10, 2019

rotational dynamics - Why is moment of inertia dependent on $r^2$ and not on $r$? (physical reason)


Moment of inertia is the mass equivalent in rotational dynamics. I know, by mathematical arguments, moment of inertia of a particle is $$ I = \text{mass} \cdot r^2.$$ But what is the physical reason? When I want the other linear equivalents like velocity,acceleration, we only multiply the linear component times the distance from the centre. But, in moment of inertia, it is not distance but distance-square. Why is it so?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...