Saturday, August 23, 2014

quantum field theory - How to prove $(gamma^mu)^dagger=gamma^0gamma^mugamma^0$?


Studying the basics of spin-$\frac{1}{2}$ QFT, I encountered the gamma matrices. One important property is $(\gamma^5)^\dagger=\gamma^5$, the hermicity of $\gamma^5$. After some searching, I stumbled upon this interesting Phys.SE answer to an earlier question on this forum. Specifically, I am interested in the formula \begin{equation} (\gamma^\mu)^\dagger=\gamma^0\gamma^\mu\gamma^0 \end{equation} which is mentioned but not proven. After consulting a faculty member of my university, I pieced together that the proof must rely somehow on the fact that the $(\gamma^\mu)^\dagger$ also obey the Clifford algebra: $$\{(\gamma^\mu)^\dagger,(\gamma^\nu)^\dagger\}=-2\eta^{\mu\nu}$$ $$\{\gamma^\mu,\gamma^\nu\}=-2\eta^{\mu\nu}$$ (for clarity, I am using $- + + +$ signature for the Minkowski metric). This should imply that there is some similarity transformation relating the two, but I am not well-versed in group theory. I guess that it should somehow turn out that the matrix that acts to transform the two representations of this algebra into each other is $\gamma^0$, which is equal to its inverse $\gamma^0=(\gamma^0)^{-1}$, as can be seen immediately from taking $\mu=\nu=0$ in the Clifford algebra. Then, the similarity transform is in the right form:


$$ (\gamma^\mu)^\dagger=S\gamma^\mu S^{-1}=\gamma^0\gamma^\mu\gamma^0 $$


I have the feeling I've got most of the necessary ingredients. However, I can't seem to be able to make this argument explicit and clear (due to my lack of proper knowledge of group theory). Could someone help me out? It would be much appreciated.


EDIT: I am looking for an answer that does not rely on using a particular representation of the gamma matrices.





No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...