Tuesday, August 19, 2014

statistical mechanics - What does Liouville's Theorem actually mean?



Basically, the mathematical statement of Liouville's theorem is:


$$\frac{\partial \rho }{\partial t}= -\sum_{i}\left(\frac{\partial \rho}{\partial q_i}\,\dot{q_i}+\frac{\partial\rho}{\partial p_i}\,\dot p_i\right)$$


While I could comprehend the derivation which is nicely done in Reif's Fundamentals of Statistical and Thermal Physics, I could not get what this theorem actually wants to imply.


The Wikipedia article mentions:



It asserts that the phase-space distribution function is constant along the trajectories of the system [...]



What does this mean?


What does the word trajectory mean in the present context?


Is $\rho$ not a function of time?



Can anyone please clarify what that quoted line actually means?



Answer



$$\frac{\partial \rho }{\partial t}= -\sum_{i}\left(\frac{\partial \rho}{\partial q_i}\,\dot{q_i}+\frac{\partial\rho}{\partial p_i}\,\dot p_i\right)$$


This means that if we have a function of $t, p, q$ namely $\rho(t,\vec p,\vec q)$ and we have a trajectory that is a curve in $(p,q)$ space, namely $q_i(t), p_i(t), i=1\ldots N,$ then:


$$ \frac{\mathrm d}{\mathrm dt} \rho(t, \vec p(t), \vec q(t)) =\frac{\partial \rho }{\partial t}+ \sum_{i}\left(\frac{\partial \rho}{\partial q_i}\,\dot{q_i}+\frac{\partial\rho}{\partial p_i}\,\dot p_i\right) $$


How if $\rho$ is constant along trajectories, then LHS is 0 and the equation you have written follows directory.


So:



  • a trajectory is any curve in 2N dimensional space described in $q_i$ and $p_i$ coordinates

  • $\rho$ is a function of both time and $\vec q$ and $\vec p$


  • whole concept is just an application of a chain rule.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...