Wednesday, May 21, 2014

quantum mechanics - How to arrive on the diffraction pattern for the double slit experiment using path integrals for the Gaussian slit case?


The diagram for the question


I wish to take the path integral route to derive the diffraction pattern for the double slit experiment using the Gaussian slits as the nature of the slits. The kernel looks like: K((x,L+D),T;(0,0),0)=Tt=0bay=b+aK((0,0),0;(y,L),T)K((y,L),t;(x,L+D),T)dydt+Tt=0bay=b+aK((0,0),0;(y,L),T)K((y,L),t;(x,L+D),T)dydt if we approximate the slit to be of a Gaussian distribution, we can say the slits are represented by G1 and G2:



G1=12πexp[(yd)2/8b2]G2=12πexp[(y+d)2/8b2]. If we assign the values: K1=Tt=0bay=b+aK((0,0),0;(y,L),T)K((y,L),t;(x,L+D),T)dydtK2=Tt=0bay=b+aK((0,0),0;(y,L),T)K((y,L),t;(x,L+D),T)dydt Then the kernel becomes: K=Tt=0y=K1G1dydt+Tt=0y=K2G2dydt But if I assume: K((0,0),0;(y,L),t)=(m2πit)exp[im2y2+L2T]K((x,L+D),T;(y,L),t)=(m2πi(Tt))exp[im2y2+L2(Tt)] which is the kernel for free particles, I get a solution of the form: K=Tt=0δπαexp[β2/4α]dtwhere:δ=(mi)21(2π)5/21t(Tt)exp(im2[L2t+D2t+x2t])exp[d28b2]α=exp[im2[1t+1t]+18b2]β=exp[2d8b22xt]t=Tt Now the problem is, I don't know how to integrate this over the time domain. Can someone tell me if I'm on the right track, and what I need to do to arrive at the right interference pattern on the screen, but finally taking the square of the thusly obtained amplitude? And possibly what the final what the final expression looks like?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...