I studied projectile motion and now I know that we can treat each component of motion independently. Since gravitational acceleration acts on both a horizontally launched bullet and a vertically dropped bullet in free fall, they both will reach the ground at the same time as their vertical initial velocity is zero. This is what I studied in high school. But I found it against a real observation that a horizontally fired bullet will travel for much longer time compared to a simply dropped bullet before hitting the ground. Could you please elaborate on how to connect the physics of the situation and real life observations?
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
A charged particle undergoing an acceleration radiates photons. Let's consider a charge in a freely falling frame of reference. In such ...
-
You are visiting your old friend Mike at Infinitely's Baking Shop. Just as you arrived, he was taking out a fresh, infinitely long loaf ...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
No comments:
Post a Comment