Saturday, May 27, 2017

quantum field theory - Relation of Q2 with the distance of interaction


In a process with only one Feynmann diagram at leading order such as eμ scattering:


enter image description here


the photon propagator is igμνq2,

with q2=(p3p1)2. Since q2<0, we sometimes define the positive value Q2=q2. Apparently, it seems ok to relate Q2 just as a quantity related to the exchange of energy and momentum between the particles.


But when reading about the running coupling constants in Halzen & Martin's book, they show that the running coupling constant of QCD has a small value for increasing Q2, and the author relates high Q2 to small distance interactions (i.e. asymptotically freedom) and small Q2 to long distance interactions.


I cannot understand how the value of the exchanged 4-momentum relates to the interaction distance. Could someone shed some light in the subject?



Answer



In a sense it is based on the heisenberg uncertainty principle, HUP



hup


In every interaction the four momentum transfer is made up of the three momentum transfer and the energy transfer. Looking at large Δp of the Q^2 transfer within the limits of the HUP the Δx gets smaller.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...