Saturday, June 28, 2014

electromagnetism - Is it true that any system of accelerating charges will radiate?


I was recently told by a physics teacher that "any system of charges in which at least some of the charges are executing some sort of accelerated motion, will radiate and lose energy". This refers to classical electrodynamics (I'm not entering into quantum mechanics), that is, this statement should either be provable or disprovable from Maxwell's equations. I tried to think of a simple system of charges that would disproof this statement, since I intuitively think that it isn't true, but I haven't come up with any. The one example I could think of was a positive charge sitting on top of a negative charge, so that the net charge is zero. No matter how they move it is obvious that there will be no radiation. But my teachers did not accept this trivial example.


So my question is whether the statement is true or not, plus a proof or a counterexample of some charges executing accelerated motion without radiating.



Answer



The claim that accelerated charges must radiate is simply false. There are very many simple situations in which they do, but in general things should be examined on a case-by-case basis; there is not simple thumb rule like "acceleration yields radiation."


The simplest way to see this is to consider a wire carrying a constant current. This situation is magnetostatic, with well-understood electromagnetic field given by Biot-Savart law... which trivially lacks any radiation, as the field is constant. This is independent of the shape of the wire, and yet, if the wire is not straight, the charges within it must accelerate at some point.


A more exotic could be a uniformly rotating ring of charge. Both charge density and current density will be constant, and will produce constant electric and magnetic fields. This can be experimentally realized with toroidal superconductors.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...