Saturday, June 28, 2014

lagrangian formalism - The derivation of fractional equations



Recently I saw some physical problems that can be modeled by equations with fractional derivatives, and I had some doubts: is it possible to write an action that results in an equation with fractional derivatives? For example, consider a hypothetical physical system with the principle of least action. Is there a "wave equation" with the time-derivative $3/2$? Does such a question make sense?



Answer



When I've seen fractional derivatives I've assumed that one place where they would naturally arise is in physical situations where there's a fractional dependency on time.


For example, random walks typically result in movement proportional to $\sqrt{t}$. Googling for "fractional+derivative+random+walk" on arxiv.org finds some papers that explore this:


http://www.google.com/search?q=fractional+derivative+random+walk+site%3Aarxiv.org


So I'm wondering if there's a way of relating some of the diffusion versions of QM with fractional derivatives.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...