When we have the Lagrangian $$\mathcal{L} = \frac{1}{2} \partial _\mu \phi\partial^\mu \phi \tag{1} $$ We have a symmetry given by $$x^\mu\mapsto e^\alpha x^\mu, \qquad\phi\mapsto e^{-\alpha} \phi.\tag{2}$$ I'm struggling to find the Noether charge for this symmetry. The formula is $$j^\mu=\frac{\partial \mathcal{L}}{\partial\partial_\mu\phi}\delta\phi-k^\mu\tag{3}$$ where $$\delta \phi=-\phi \tag{4}$$ in this case, but I can't find $k^\mu$ such that $$\delta \mathcal {L}=\partial _\mu k^\mu .\tag{5}$$
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
A charged particle undergoing an acceleration radiates photons. Let's consider a charge in a freely falling frame of reference. In such ...
-
You are visiting your old friend Mike at Infinitely's Baking Shop. Just as you arrived, he was taking out a fresh, infinitely long loaf ...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
No comments:
Post a Comment