We say that when the thermal de Broglie wavelength is much smaller than the interparticle distance, the gas can be considered to be a classical or Maxwell–Boltzmann gas. On the other hand, when the thermal de Broglie wavelength is on the order of or larger than the interparticle distance, quantum effects will dominate and the gas must be treated as a Fermi gas or a Bose gas, depending on the nature of the gas particles. $(V/N)^{1/3} < \lambda_{th} $. My question is why do quantum effects dominate?
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
A charged particle undergoing an acceleration radiates photons. Let's consider a charge in a freely falling frame of reference. In such ...
-
You are visiting your old friend Mike at Infinitely's Baking Shop. Just as you arrived, he was taking out a fresh, infinitely long loaf ...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
No comments:
Post a Comment