When considering basic Newtonian mechanics, we can treat vector as free and move their point of application at will. This is consistent with the affine nature of Euclidean space. However, when calculating torque on a body, we must treat forces as bound to their point of application. What is the mathematical reason for this? What does it imply for affine structure of Euclidean space*
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
-
I have read the radiation chapter, where I have been introduced with the terms emissivity and absorptivity. emissivity tells about the abili...
-
A charged particle undergoing an acceleration radiates photons. Let's consider a charge in a freely falling frame of reference. In such ...
No comments:
Post a Comment