The usual Schrodinger Lagrangian is i(ψ∗∂tψ)+12mψ∗(∇2)ψ,
My trouble is that these two lagrangian densities lead to different conjugate momenta and hence when setting equal time commutation relations, I am getting different results (a factor of 2 is causing the problem). I can rescale the fields but then my Hamiltonian also changes. Then applying Heisenberg equation of motion, I don't get the operator Schrodinger equation.
Is it possible to work with the real Lagrangian density and somehow get the correct commutation relations? I would have expected two Lagrangians differing by total derivative terms to give identical commutation relations (since canonical transformations preserve them). But perhaps I am making some very simple error. Unless all conjugate momenta are equivalent for two Lagrangians differing by total derivatives, how does one choose the correct one?
I guess the same thing happens for other first order systems like Dirac Lagrangian also.
No comments:
Post a Comment