The number operator, counting the number of quanta is defined as follows:
N=∫d3p(2π)3iia†pap
with the momentum eigenstates being defined as |p1,p2,...pn⟩=a†p1a†p2...a†pn|0⟩.
The claim is that N|p1,p2,...pn⟩=n|p1,p2,...pn⟩.
Can anyone show this explicitly? I have no idea what the action of a†pap is on a multi-particle state such as |p1,p2,...pn⟩.
Answer
It all boils down to the fact that [ap,a†q]=δp,q1. Consider as an example |2p⟩=a†pa†p|0⟩. Then the operator a†pap on |2⟩ gives a†pap|2p⟩=a†papa†pa†p|0⟩=a†p[ap,a†p]a†p|0⟩+a†pa†papa†p|0⟩=|2p⟩+a†pa†papa†p|0⟩=|2p⟩+a†pa†p[ap,a†p]|0⟩+a†pa†pa†pap|0⟩=|2p⟩+|2p⟩+0=2|2p⟩
No comments:
Post a Comment