From the maths governing an LC circuit (eg. EB=LI22) we can deduce, that the current through the inductor will have a maximum value, when there's no energy stored in the capacitor, or else EB=max⟺I=max. But how to explain it intuitively? Suppose we have a fully charged capacitor and we connect it to a inductor. As the voltage between the capacitor's plates decreases, so should the current flowing through the circuit. Yet, we observe the opposite, as the current increases. I suppose it's due to the EMF induced in the inductor, but shouldn't it merely decrease the rate with which the current is decreasing?
Answer
As the voltage between the capacitor's plates decreases, so should the current flowing through the circuit.
I don't follow your reasoning here. Recall that, for an ideal capacitor, we have:
iC=CdvCdt
In words, the current through the capacitor is proportional to the rate of change of the voltage across, not the instantaneous value of the voltage.
So, for example, if the voltage across the capacitor is sinusoidal
vC=Vsinωt
the current is
iC=ωCVcosωt
which means (1) that the maximum current (magnitude) occurs when the voltage is zero and (2) that the maximum voltage (magnitude) occurs when the current is zero.
Now, for this simple LC circuit, the voltage across the capacitor is identical to the voltage across the inductor:
vC=vL
thus,
iC=CdvLdt
For an ideal inductor, we have:
vL=LdiLdt
But, the inductor current is
iL=−iC
thus,
iC=−LCd2iCdt2
which means that the current is sinusoidal
iC=Asinωt+Bcosωt
where
ω=1√LC
Since, in your example, the initial current is zero and the initial voltage is V, we have
iC(t)=−VωLsinωt
No comments:
Post a Comment