Monday, May 18, 2015

supersymmetry - What Lie supergroup does the super-Poincare algebra generate?


Every Lie supergroup has an associated Lie superalgebra of generators (in general, some of which are bosonic and some fermionic). Which Lie supergroup(s) are generated by the Super-Poincare algebra for $d$ spacetime dimensions and $N$ spinor generators (or, if $d \equiv 2 \text{ mod } 4$, $M$ left-handed and $N$ right-handed spinor generators)?




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...