Saturday, February 11, 2017

electromagnetism - What is the physical significance of the Dipole Transformation of Maxwell's Equations?




Given Maxwell's equations of the form ˉ×ˉB=4πcˉJ+0ˉEˉ×ˉE=0ˉBˉˉB=0ˉˉE=4πρ,

what is the physical significance of the following transformation of Maxwell's equations: iˉ×ˉG+ˉG0=4πcˉR+0ˉGˉˉG0G0=4πR0,
where ˉG=(iˉr×ˉFx0ˉF), G0=(ˉrˉF), ˉR=(ρcˉrx0ˉJ+iˉr×ˉJ), R0=(ˉrˉJx0ρc)/c and ˉF=ˉEiˉB.



In this post, I refer to (Amp-Far Dipole) and (Gauss Dipole) as the dipole equations, because I do not know what there actual names are or who first published these equations. I just stumbled upon them by accident on pencil and paper.


x0=ct is the time variable multiplied by the speed of light for condensed notation purposes.


ˉR is the complex combination of the electric dipole field density ρcˉrx0ˉJ and the magnetic dipole field density ˉr×ˉJ.


ˉR is interpreted as a fictitious current in the dipole equations (Amp-Far Dipole). The corresponding fictitious charge density of ˉR is R0, which is equal to the Minkowski inner product of the four-position and the four-current.



Though R0 and ˉR are fictitious charge and current, they are conserved as a current when G0=0. This implies that G0 breaks charge conservation of the fictitious charge and current R0 and ˉR.


An interesting consequence of the dipole equations is they are identical to Maxwell's equations when G0=0.




I first write Ampere's law, Faraday's law and Gauss' law in complex form iˉ×ˉF=4πcˉJ+0ˉFˉˉF=4πρ,

where ˉF=ˉE+iˉB.



I use the following differential vector calculus identity ˉr×(ˉ×)+ˉr(ˉ)+x0(0)=ˉ×(ˉr×)+ˉ(ˉr)+0(x0)

to transform (Amp-Far) into the following: ˉr×(ˉ×ˉF)+ˉr(ˉˉF)+x0(0ˉF)=ˉr×(i4πcˉJ+i0ˉF)+ˉr(4πρ)+x0(iˉ×ˉF4πcˉJ)=4πc(iˉr×ˉJ)+0(iˉr×ˉF)+4π(ρˉr)iˉ×(x0ˉF)4πc(x0ˉJ)=ˉ×(ˉr×ˉF)+ˉ(ˉrˉF)+0(x0ˉF),
which reduces to the following expression iˉ×(iˉr×ˉFx0ˉF)+ˉ(ˉrˉF)=4πc(ρcˉrx0ˉJ+iˉr×ˉJ)+0(iˉr×ˉFx0ˉF).
One can perform the following substitutions ˉG=(iˉr×ˉFx0ˉF), G0=(ˉrˉF), and ˉR=(ρcˉrx0ˉJ+iˉr×ˉJ) to obtain iˉ×ˉG+ˉG0=4πcˉR+0ˉG.



I use the following differential vector calculus identity x0()+ˉr(iˉ×)=ˉ(i(ˉr×)x0)

to transform (Gauss) into the following: x0(ˉF)+ˉr(iˉ×ˉF)=x0(4πρ)+ˉr(4πcˉJ+0ˉF)=4πc(ˉrˉJx0ρc)+0(ˉrˉF)=ˉ(iˉr×ˉFx0ˉF),
which reduces to the following expression ˉ(iˉr×ˉFx0ˉF)0(ˉrˉF)=4πc(ˉrˉJx0ρc).
One can perform the following substitutions R0=(ˉrˉJx0ρc)/c to obtain ˉˉG0G0=4πR0.



Answer



No explicit complexification is needed to derive this breakdown of Maxwell's equations. This can be understood wholly through the real vector space of special relativity.


Let's start with Maxwell's equations for the EM field, in the clifford algebra language called STA: the spacetime algebra. Maxwell's equations take the form


F=J


where F=F+F, F=e0E+Bϵ3, in the (,+,+,+) sign convention.



Let x be the spacetime position vector. It's generally true that, for a vector v and a constant bivector C,


(Cx)=2C,(Cx)=2C(Cx)=0


One can then evaluate the expression


(Fx)=(F)x+˙(F˙x)


where the overdot means that only x is differentiated in the second term; using the product rule, F is "held constant" and so the above formulas apply. We just argued that the second term is zero, so we get (Fx)=(F)x. Thus, we arrive at the following transformation of Maxwell's equations:


(Fx)=Jx


Now, we could always write F as a "complex bivector" in the sense that, using ϵ=e0ϵ3, and ϵϵ=1, we have


F=e0EBϵ3e0ϵ3ϵ=e0(E+ϵB)


It's crucial to note that ϵ does not commute with any vector.


What are the components of Fx? Write x=te0+r and we can write them as



Fx=e0(Ex+ϵBx)=e0(Er+Ere0Et+ϵBre0B×r+ϵBte0)


This too can be written in a "complex" form:


Fx=(e0Er+Et+B×r)+ϵ(E×r+e0Br+Bt)


We seem to differ on some signs, but this is recognizably the same quantity you have called G.


Now, to talk about how these equations break down, let's write G=G1+G3, where G1=(e0Er+) and G3=ϵ(E×r+). Let's also write for R=Jx=R0+R2.


Maxwell's equations then become


G1=R0,G1+G3=R2,G3=0


The first and third equations are the components of the Gauss dipole; the second equation is the Ampere-Faraday dipole equation.




Now, what does it all mean? The expression for G=Fx includes both rotational moments of the EM field as well as some dot products, so it measures both how much the spacetime position is in the same plane as the EM field as well as how much the spacetime position is out of the plane.



It's probably more instructive to look at the source term Jx. This tells us both about the moments of the four-current as well as how it goes toward or away from the coordinate origin. The description for the moments is wholly in the Ampere-Faraday dipole equation. What kinds of moments would this describe? A pair of two opposite point charges at rest, separated by a spatial vector 2ˆv and centered on the origin, each with current at rest j0, would create a R=Jx=+j0etˆvj0et(ˆv)=2j0etˆv, so this would be described wholly by the A-F dipole equation.


That's at time zero, however. At later times, R will pick up these weird time terms. Say we're at time τ. Then R=2j0etˆv+j0et(τet)j0et(τet). So for this case, there's no problem: the extra stuff will just cancel. A single charge, however, would start picking up this term.


In a few words, these equations are weird.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...