Thursday, February 16, 2017

quantum mechanics - Proving Gauge invariance of Schrodinger Equation


I am trying to proof explicitly that Schrodinger equation: itψ=[12m(iqA)2+qV]ψ


remains the same under the following gauge transformation:


ψeiqΛ/ψ

AA+Λ
VVtΛ


where t stands for the time derivative operator.


However, I am having problems with the algebra, so I will show my procedure with the hopes that someone point to an error:



Left side of equation it(eiqΛ/ψ)=ih(eiqΛ/tψ+iqeiqΛ/ψtΛ)=iheiqΛ/tψqeiqΛ/ψtΛ


Right side of equation [12m(iq(A+Λ))2+q(VtΛ)]=

12m[22qi(A+2Λ+A+Λ)+q2[A2+2(AΛ)+(Λ)2]]eiqΛ/ψ+qVeiqΛ/ψqeiqΛ/ψtΛ


It is possible to observe that the last term in both (the right and left) sides cancel each other. Then, using:


(eiqΛ/ψ)=eiqΛ/ψ+iqhψΛ


2(eiqΛ/ψ)=eiqΛ/2ψ+2iqeiqΛ/(Λ)(ψ)+ψiqeiqΛ/2Λq22ψeiqΛ/(Λ)2


we then obtain (by applying operators and canceling all the eiqΛ/ ):


itψ=12m[22ψ2iqh(Λ)(ψ)iqψ2Λ+q2ψ(Λ)2+iq(A)ψ+iq2Λψ+iq(Aψ)q2ψ(AΛ)+iq(Λ)(ψ)q2ψ(Λ)2+q2A2+2q2(AΛ)ψ+q2(Λ)2ψ]+qVψ


cancelling some terms, and rearranging:


itψ=12m[22ψ+iq(A)ψ+iq(Aψ)+q2A22iqh(Λ)(ψ)+q2ψ(Λ)2q2ψ(AΛ)+iq(Λ)(ψ)+2q2(AΛ)ψ]+qVψ


after more reordering:



itψ=12m[(iqA)2]+qVψ+12m[iqh(Λ)(ψ)+q2ψ(Λ)2+q2(AΛ)ψ]


It is possible to observe that the original schrodinger equation is up there, but with an extra part in the right side, this extra part is: 12m[iqh(Λ)(ψ)+q2ψ(Λ)2+q2(AΛ)ψ]


So am wondering, is this extra part some how 0, or am I making a mistake. Also I don't know how to make the algebra "nicer" to follow, if there is anything I can do please comment.



Answer



Actually, Schroedinger equation itψ+[12m(iqA)2+qV]ψ=0

under the gauge transformations


ψψ=eiqΛ/ψ

AA=A+Λ
VV=VtΛ


does not remain invariant, but the left-hand side of (0) gives rise to itψ+[12m(iqA)2+qV]ψ=eiqΛ/{itψ+[12m(iqA)2+qV]ψ}.


In summary, since eiqΛ/0,


gauge transformed quantities satisfy Schroedinger equation if untranformed quantities do.


To prove it, avoid brute force computations as yours which give rise to unavoidable mistakes almost certainly and go on as follows. First rewrite the initial equation as [itqV]ψ12m(iqA)2ψ=0

Next notice that, under the transformations, we have



[itqV]ψ=[itq(VtΛ)]eiqΛ/ψ=eiqΛ/[itqV]ψ

and (iqA)ψ=(iq(A+Λ))eiqΛ/ψ=eiqΛ/(iqA)ψ
so that, iterating the second result (iqA)2ψ=eiqΛ/(iqA)2ψ.
Putting all together, under the action of gauge transformations, (1) becomes [itqV]ψ12m(iqA)2ψ=eiqΛ/{[itqV]ψ12m(iqA)2ψ}=0
as wanted.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...