Thursday, December 25, 2014

quantum mechanics - Weyl Ordering Rule


While studying Path Integrals in Quantum Mechanics I have found that [Srednicki: Eqn. no. 6.6] the quantum Hamiltonian $\hat{H}(\hat{P},\hat{Q})$ can be given in terms of the classical Hamiltonian $H(p,q)$ by


$$\hat{H}(\hat{P},\hat{Q}) \equiv \int {dx\over2\pi}\,{dk\over2\pi}\, e^{ix\hat{P} + ik\hat{Q}} \int dp\,dq\,e^{-ixp-ikq}\,H(p,q)\; \tag{6.6}$$


if we adopt the Weyl ordering.


How can I derive this equation?



Answer



Let the position and momentum operators in $n$ phase-space dimensions be collectively denoted $\hat{Z}^I$, and let the corresponding symbols be denoted $z^{I}$, where $I\in\{1,\ldots,n\}$. The operator $\hat{f}(\hat{Z})$ corresponding to the Weyl-symbol $f(z)$ is


$$ \hat{f}(\hat{Z})~\stackrel{\begin{matrix}\text{symmetri-}\\ \text{zation}\end{matrix}}{=}~ \left.\sum_{m=0}^{\infty}\frac{1}{m!}\left[\hat{Z}^1\frac{\partial}{\partial z^1}+\ldots +\hat{Z}^n\frac{\partial}{\partial z^n} \right]^m f(z)\right|_{z=0} \qquad $$ $$~\stackrel{\begin{matrix}\text{Taylor}\\ \text{expan.}\end{matrix}}{=}~ \left.\exp\left[\sum_{I=1}^n\hat{Z}^I\frac{\partial}{\partial z^I}\right] f(z)\right|_{z=0} \qquad $$ $$~=~\int_{\mathbb{R}^{n}} \! d^{n}z~\delta^{n}(z)~ \exp\left[\sum_{I=1}^n\hat{Z}^I\frac{\partial}{\partial z^I}\right] f(z) $$ $$ ~\stackrel{\delta\text{-fct}}{=}~\int_{\mathbb{R}^{2n}} \! \frac{d^{n}z~d^{n}k}{(2\pi)^{n}} \exp\left[-i\sum_{J=1}^n k_Jz^J\right] \exp\left[\sum_{I=1}^n \hat{Z}^I\frac{\partial}{\partial z^I}\right] f(z)$$ $$~\stackrel{\text{int. by parts}}{=}~\int_{\mathbb{R}^{2n}} \! \frac{d^{n}z~d^{n}k}{(2\pi)^{n}} f(z)~ \exp\left[-\sum_{I=1}^n\hat{Z}^I\frac{\partial}{\partial z^I}\right] \exp\left[-i\sum_{J=1}^n k_Jz^J\right] $$ $$~=~\int_{\mathbb{R}^{2n}} \! \frac{d^{n}z~d^{n}k}{(2\pi)^{n}} f(z)~ \exp\left[i\sum_{I=1}^n k_I\hat{Z}^I\right] \exp\left[-i\sum_{J=1}^n k_Jz^J\right] $$ $$~\stackrel{\text{BCH}}{=}~\int_{\mathbb{R}^{2n}} \! \frac{d^{n}z~d^{n}k}{(2\pi)^{n}} f(z)~ \exp\left[i\sum_{I=1}^n k_I(\hat{Z}^I-z^I)\right].$$



The above manipulations make sense for a sufficiently well-behaved function $z\mapsto f(z)$.


Example: If the Weyl-symbol is of the form $f(z)=g\left(\sum_{I=1}^n k_I z^I\right)$ for some analytic function $g:\mathbb{C}\to \mathbb{C}$, then the corresponding operator is $\hat{f}(\hat{Z})=g\left(\sum_{I=1}^n k_I\hat{Z}^I\right)$.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...