Thursday, December 25, 2014

quantum mechanics - Weyl Ordering Rule


While studying Path Integrals in Quantum Mechanics I have found that [Srednicki: Eqn. no. 6.6] the quantum Hamiltonian ˆH(ˆP,ˆQ) can be given in terms of the classical Hamiltonian H(p,q) by


ˆH(ˆP,ˆQ)dx2πdk2πeixˆP+ikˆQdpdqeixpikqH(p,q)


if we adopt the Weyl ordering.


How can I derive this equation?



Answer



Let the position and momentum operators in n phase-space dimensions be collectively denoted ˆZI, and let the corresponding symbols be denoted zI, where I{1,,n}. The operator ˆf(ˆZ) corresponding to the Weyl-symbol f(z) is


ˆf(ˆZ) symmetri-zation= m=01m![ˆZ1z1++ˆZnzn]mf(z)|z=0

 Taylorexpan.= exp[nI=1ˆZIzI]f(z)|z=0
 = Rndnz δn(z) exp[nI=1ˆZIzI]f(z)
 δ-fct= R2ndnz dnk(2π)nexp[inJ=1kJzJ]exp[nI=1ˆZIzI]f(z)
 int. by parts= R2ndnz dnk(2π)nf(z) exp[nI=1ˆZIzI]exp[inJ=1kJzJ]
 = R2ndnz dnk(2π)nf(z) exp[inI=1kIˆZI]exp[inJ=1kJzJ]
 BCH= R2ndnz dnk(2π)nf(z) exp[inI=1kI(ˆZIzI)].



The above manipulations make sense for a sufficiently well-behaved function zf(z).


Example: If the Weyl-symbol is of the form f(z)=g(nI=1kIzI) for some analytic function g:CC, then the corresponding operator is ˆf(ˆZ)=g(nI=1kIˆZI).


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...