Wednesday, July 26, 2017

classical mechanics - How can earthquakes shift the earth's axis?


One often comes across news articles that claim that an earthquake shifted the earth's axis.



http://news.google.com/?q=earthquake%20shifted%20OR%20shifts%20earth%27s%20axis



If you ignore the influence of other celestial bodies, an internal event like an earthquake surely can't change the direction of the angular momentum of the Earth (unless stuff is ejected out of Earth), since angular momentum has to be conserved in the absence of an external torque. So the axis has to remain fixed.


Am I missing something? Or are geologists trying to say that the resulting movement of tectonic plates causes a change in the point of intersection of the axis (which remains the same) and the plates that include the poles, so that it seems as if the axis has shifted?


EDIT Some articles mention the value of the shift in the axis and also the change in the length of the day. If, as Ted Bunn's answer indicates below, the shift in the axis isn't actually real but is because of the movement of tectonic plates with respect to the axis, shouldn't the shift be different at the north and south poles? How are the shifts and the change in day-length calculated?




Answer



Angular momentum doesn't change, but the angular velocity vector does. This is effectively due to a shift in the body's moment of inertia tensor.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...