Sunday, September 24, 2017

general relativity - Why would spacetime curvature cause gravity?


It is fine to say that for an object flying past a massive object, the spacetime is curved by the massive object, and so the object flying past follows the curved path of the geodesic, so it "appears" to be experiencing gravitational acceleration. Do we also say along with it, that the object flying past in reality exeriences NO attraction force towards the massive object? Is it just following the spacetime geodesic curve while experiencing NO attractive force?


Now come to the other issue: Supposing two objects are at rest relative to each other, ie they are not following any spacetime geodesic. Then why will they experience gravitational attraction towards each other? E.g. why will an apple fall to earth? Why won't it sit there in its original position high above the earth? How does the curvature of spacetime cause it to experience an attraction force towards the earth, and why would we need to exert a force in reverse direction to prevent it from falling? How does the curvature of spacetime cause this?


When the apple was detatched from the branch of the tree, it was stationary, so it did not have to follow any geodesic curve. So we cannot just say that it fell to earth because its geodesic curve passed through the earth. Why did the spacetime curvature cause it to start moving in the first place?





No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...