I am working thru a derivation of the group velocity formula and I get to this stage: $$y=2A\cos(x\frac{\Delta K}{2} -t\frac{\Delta \omega}{2})\sin( \bar k x-\bar \omega t)$$ Then all the derivations I have seen say that $\frac{\Delta \omega}{\Delta K} $ is the group velocity. I know mathematically why this is a velocity but what I don't get is why do we know that this is the group velocity rather then the phase velocity and that $\frac{\bar \omega}{\bar k}$ is the phase velocity and not the group velocity?
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
A charged particle undergoing an acceleration radiates photons. Let's consider a charge in a freely falling frame of reference. In such ...
-
You are visiting your old friend Mike at Infinitely's Baking Shop. Just as you arrived, he was taking out a fresh, infinitely long loaf ...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
No comments:
Post a Comment