Both the photon and the W boson are spin-1 particles. Under rotation W boson must transform under the 3-dimensional representation of SU(2). However, the photon has two degrees of freedom (or helicity states), unlike W boson. How does it transform under the rotation of coordinates? What is the underlying group and group representation which describes the transformation of photons under rotation.
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
-
I have read the radiation chapter, where I have been introduced with the terms emissivity and absorptivity. emissivity tells about the abili...
-
A charged particle undergoing an acceleration radiates photons. Let's consider a charge in a freely falling frame of reference. In such ...
No comments:
Post a Comment