Saturday, September 26, 2015

Why are von Neumann Algebras important in quantum physics?


At the moment I am studying operator algebras from a mathematical point of view. Up to now I have read and heard of many remarks and side notes that von Neumann algebras ($W^*$ algebras) are important in quantum physics. However I didn't see where they actually occur and why they are important. So my question is, where they occur and what's exactly the point why they are important.



Answer



[Once again reading @Lubos' answer sparked these memories in my mind. Thanks for the inspiration @Lubos :)]


@student - everything @Lubos says in this answer is valid. Given that von Neumann algebras are an exotic beast at present as far as their application in physics is concerned, I do know of three cases where they have had significant direct or indirect influence on theoretical physics.




  1. The entire program of knot theory and manifold invariants etc - as represented in Witten's work on TQFT's (topological quantum field theories) - owes in large part to Vaugh Jones' discovery of a knot invariant known as (obviously) the Jones Polynomial. I know only the vague outline of how he was lead to this discovery but I do know that it happened in the course of his investigations on a particular class (type III?) of von Neumann algerbas.





  2. Connes' non-commutative geometry program also has its roots in the study of von Nemann's algebras if I'm not mistaken. Non-commutative geometry is coming of age with a large number of applications ranging from methods of unifying the Standard Model particles to understanding the quantum hall effect. NCG also arises naturally in string inspired models of cosmology and inflation, [Reference]




  3. Finally, Connes and Rovelli put forward the intriguing "thermal time hypothesis" in order to try to resolve some of the dilemmas regarding the notion of "time" evolution and dynamics which arise in theories of quantum gravity where the Hamiltonian is a pure constraint - as is the case in the "Canonical Quantum Gravity" program. Their construction rests on a certain property of von Neumann algebras. To quote from their abstract:



    ... we propose ... that in a generally covariant quantum theory the physical time-flow is not a universal property of the mechanical theory, but rather it is determined by the thermodynamical state of the system ("thermal time hypothesis"). We implement this hypothesis by using a key structural property of von Neumann algebras: the Tomita-Takesaki theorem, which allows to derive a time-flow, namely a one-parameter group of automorphisms of the observable algebra, from a generic thermal physical state. We study this time-flow, its classical limit, and we relate it to various characteristic theoretical facts, as the Unruh temperature and the Hawking radiation.





Of course these are all rather specific and esoteric sounding applications so as @Lubos' noted, vNA's are far more being ubiquitous in theoretical physics.



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...