Monday, December 14, 2015

experimental physics - Why is jumping into water from high altitude fatal?



If I jump from an airplane straight positioned upright into the ocean, why is it the same as jumping straight on the ground?


Water is a liquid as opposed to the ground, so I would expect that by plunging straight in the water, I would enter it aerodynamically and then be slowed in the water.



Answer



When you would enter the water, you need to "get the water out of the way". Say you need to get 50 liters of water out of the way. In a very short time you need to move this water by a few centimeters. That means the water needs to be accelerated in this short time first, and accelerating 50 kg of matter with your own body in this very short time will deform your body, no matter whether the matter is solid, liquid, or gas.


The interesting part is, it does not matter how you enter the water—it is not really relevant (regarding being fatal) in which position you enter the water at a high velocity. And you will be slowing your speed in the water, but too quickly for your body to keep up with the forces from different parts of your body being decelerated at different times.


Basically I'm making a very rough estimate whether it would kill, only taking into account one factor, that the water needs to be moved away. And conclude it will still kill, so I do not even try to find all the other ways it would kill.


Update - revised:


One of the effects left out for the estimate is the surface tension.
It seems to not cause a relevant part of the forces - the contribution exists, but is negligibly small. That is depending on the size of the object that is entering the water - for a small object, it would be different.


(see answers of How much of the forces when entering water is related to surface tension?)



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...