If the energy of a photon
Ep=hv
And the energy of an electromagnetic wave is
Ew∝ˆB2
What is the relationship between Ew and Ep?
Answer
You only need to rewrite B and E in terms of field Aμ (here ℏ=c=1), ˆB=[∇׈A],ˆE=−∂ˆA∂t−∇ˆA0, which is written as infinite "sum" of photons: Aμ=∑λ∫d3p√(2π)32Epeλμ(p)(ˆaλ(p)e−ipx+ˆa†λ(p)eipx). After that you can easily obtain the relation between energies of sets of photons and "real" EM field: ˆH=∫ˆT00d3r=∫12(ˆB2+ˆE2)d3r.
If you need I'll derive it.
Tedious derivation
For simplicity you need Coulomb gauge A0=0,(∇⋅A)=0 (eq. (3) already implies that), polarization sum rule and orthogonality relations for polarization vectors, ∑λeλi(p)eλj(p)=δij,(eλ(p)⋅eλ′(p))=δλλ′. and commutation relations [ˆaλ(p),ˆa†λ′(k)]=δλλ′δ(p−k),[ˆaλ(p),ˆaλ′(k)]=0. First let's calculate (1) by using (2) (Ep=p0): ˆE(x)=−∂0ˆA(x)=i∑λ∫d3p√2(2π)3eλ(p)√Ep(ˆaλ(p)e−ipx−ˆa†λ(p)eipx), ˆB(x)=[∇׈A]=i∑λ∫d3p√(2π)32Ep[p×eλ(p)](ˆaλ(p)e−ipx−ˆa†λ(p)eipx). Then ∫d3rˆE2=−∑λ,λ′∫d3rd3pd3k(2π)32√EpEk(eλ(p)⋅eλ′(k))× ×(ˆaλ(p)e−ipx−ˆa†λ(p)eipx)(ˆaλ′(k)e−ikx−ˆa†λ′(k)eikx)=|1(2π)3∫dinxd3r=δ(n)ein0x0|= =−∑λ,λ′12∫d3pd3k√EpEk(eλ(p)⋅eλ′(k))× ×δ(p+k)(eix0(k0+p0)ˆaλ(p)ˆaλ′(k)+e−ix0(k0+p0)ˆa†λ(p)ˆa†λ′(k))+ +∑λ,λ′12∫d3pd3k√EpEk(eλ(p)⋅eλ′(k))× ×δ(p−k)(eix0(k0−p0)ˆaλ(p)ˆa†λ′(k)+e−ix0(k0−p0)ˆa†λ(p)ˆaλ′(k))= =−12∑λ,λ′∫d3pEp(eλ(p)⋅eλ′(−p))(e2ip0x0ˆaλ(p)ˆaλ′(−p)+e−2ix0p0ˆa†λ(p)ˆa†λ′(−p))+ +12∑λ,λ′∫d3pEp(eλ(p)⋅eλ′(p))(ˆaλ(p)ˆa†λ′(p)+ˆa†λ(p)ˆaλ′(p)). The same thing with ∫d3rˆB2 by using relation ([p×eλ(p)]⋅[k×eλ′(k)])=(p⋅k)(eλ(p)⋅eλ′(k))−(p⋅eλ(p))(k⋅eλ′(k))= =(p⋅k)(eλ(p)⋅eλ′(k)) can give ∫d3rˆB2= =12∑λ,λ′∫d3pEp(eλ(p)⋅eλ′(−p))(e2ip0x0ˆaλ(p)ˆa†λ′(−p)+e−2ix0p0ˆa†λ(p)ˆaλ′(−p)) +12∑λ,λ′∫d3pEp(eλ(p)⋅eλ′(p))(ˆaλ(p)ˆa†λ′(p)+ˆa†λ(p)ˆaλ′(p)). So after summation of (4),(5) you will get that ˆH=12∑λ,λ′∫d3p(eλ(p)⋅eλ′(p))Ep(ˆaλ(p)ˆa†λ′(p)+ˆa†λ(p)ˆaλ′(p))= 12∑λ∫d3pEp(ˆaλ(p)ˆa†λ(p)+ˆa†λ(p)ˆaλ(p))=∑λ∫d3pEp(ˆa†λ(p)ˆaλ(p)+δ(0)). Eq. 6 implies "representation" of the energy of EM field as sum of energies of photons (Ep=ωp), because ∫d3pˆa†λ(p)ˆaλ(p) refers to the particles number operator.
No comments:
Post a Comment