I've started reading Peskin and Schroeder on my own time, and I'm a bit confused about how to obtain Maxwell's equations from the (source-free) lagrangian density $L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ (where $F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu$ is the field tensor).
Substituting in for the definition of the field tensor yields $L = -\frac{1}{2}[(\partial_\mu A_\nu)(\partial^\mu A^\nu) - (\partial_\mu A_\nu)(\partial^\nu A^\mu)]$. I know I should be using $A^\mu$ as the dynamical variable in the Euler-Lagrange equations, which become $\frac{\partial L}{\partial A_\mu} - \partial_\mu\frac{\partial L}{\partial(\partial_\mu A_\nu)} = - \partial_\mu\frac{\partial L}{\partial(\partial_\mu A_\nu)}$, but I'm confused about how to proceed from here.
I know I should end up with $\partial_\mu F^{\mu\nu} = 0$, but I don't quite see why. Since $\mu$ and $\nu$ are dummy indices, I should be able to change them: how do the indices in the lagrangian relate to the indices in the derivatives in the Euler-Lagrange equations?
Answer
Well, you are almost there. Use the fact that $$ {\partial (\partial_{\mu} A_{\nu}) \over \partial(\partial_{\rho} A_{\sigma})} = \delta_{\mu}^{\rho} \delta_{\nu}^{\sigma}$$ which is valid because $\partial_{\mu} A_{\nu}$ are $d^2$ independent components.
No comments:
Post a Comment