Wednesday, January 18, 2017

quantum mechanics - How to derive the angular momentum operator for 3D harmonic oscillator?


In Angular momentum for 3D harmonic oscillator in two different bases Robin Ekman comes with the expression to $L_i$. I can't see how $$\epsilon_{ijk}(a_j^\dagger a_k^\dagger - a_j a_k) = 0$$ when developing the $L_i$ for isotropic 3D harmonic oscillator $$L_i = i \frac{\hbar}{2} \epsilon_{ijk}(a_j + a_j^\dagger) (a_k^\dagger - a_k) = i \frac{\hbar}{2} \epsilon_{ijk}( a_j a_k^\dagger - a_j a_k + a_j^\dagger a_k^\dagger - a_j^\dagger a_k) = -i\hbar\epsilon_{ijk} a^\dagger_j a_k.$$


I see that $$\left(a_j^\dagger a_k^\dagger\right)^\dagger = a_k a_j = a_j a_k,$$ which means $a_ja_k$ isn't hermitian for $i \ne j$ how does $$\epsilon_{ijk}(a_j^\dagger a_k^\dagger - a_j a_k)$$ go to $0$?



Answer



It's not so much that $\epsilon_{ijk}(a_j^\dagger a_k^\dagger - a_j a_k)$ is zero, but that each of those terms vanishes on its own: $$ \text{both}\quad \epsilon_{ijk}a_j^\dagger a_k^\dagger = 0 \quad\text{and}\quad \epsilon_{ijk}a_j a_k = 0, $$ because those operators commute, so $a_ja_k=a_ka_j$ and ditto for the daggers, and for each pair with $j\neq k$ you have a corresponding term with the opposite sign in the Levi-Civita tensor. Thus, say, for $i=1$, the double-annihilation term reads $$ \epsilon_{1jk}a_j a_k = a_2a_3-a_3a_2 = 0, $$ and similarly for the other components and the double-creation term.


The same thing happens with the other two terms, because you're so far left with $$ L_i=\frac{\hbar}{2i}\varepsilon_{ijk}(a_j^\dagger a_k^\phantom{\dagger}-a_j^\phantom{\dagger}a_k^\dagger), $$ but the two terms are essentially identical. To see this, take the second term and flip the $j$ and $k$ labels: \begin{align} \frac{\hbar}{2i}\varepsilon_{ijk}a_j^\phantom{\dagger}a_k^\dagger & = \frac{\hbar}{2i}\varepsilon_{ikj}a_k^\phantom{\dagger}a_j^\dagger \\& = \frac{\hbar}{2i}\varepsilon_{ikj}(a_j^\dagger a_k^\phantom{\dagger}+i\delta_{jk}) \\& = -\frac{\hbar}{2i}\varepsilon_{ijk}a_j^\dagger a_k^\phantom{\dagger} + \frac{\hbar}{2}\varepsilon_{ikj}\delta_{jk} \\& = -\frac{\hbar}{2i}\varepsilon_{ijk}a_j^\dagger a_k^\phantom{\dagger} , \end{align} where $\varepsilon_{ikj}\delta_{jk}=1-1=0$ vanishes. Putting this back into the full expression, you get $$ L_i=\frac{\hbar}{2i}\varepsilon_{ijk}(a_j^\dagger a_k^\phantom{\dagger}+a_j^\dagger a_k^\phantom{\dagger}) =-i\hbar\varepsilon_{ijk}a_j^\dagger a_k^\phantom{\dagger} $$ as claimed earlier.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...