To diagonalize quadratic term in the antiferromagnet Heisenberg model, we may introduce the Bogoliubov transformation:ak=ukαk+vkβ†k, b†k=vkαk+ukβ†k. This transformation can diagonalize the quadratic term in the Hamiltonian:
H=∑k(a†kak+b†kbk+γka†kb†k+γkakbk)=∑k(a†kbk)(1γkγk1)(akb†k)=∑k(α†kβk)(ukvkvkuk)(1γkγk1k)(ukvkvkuk)(αkβ†k)=∑k(α†kβk)(ϵk00ϵk)(αkβ†k)
with ϵk=√1−γ2k,uk=√1+ϵk2ϵk,vk=−γk√2ϵk(1+ϵk). But the transformation U: (ukvkvkuk) is not unitary, because uk,vk are real, U†≠U−1.
Is the number of bosons not conserved, so the transformation may not be unitary? Are there any restriction on the transformation of boson?
No comments:
Post a Comment