There is no acceptable/viable mechanism for a free electron to absorb or emit energy, without violating energy or momentum conservation. So its wavefunction cannot collapse into becoming a particle, right? How do 2 free electrons repel each other then?
Answer
It is true that the reactions $$e + \gamma \to e, \quad e \to e + \gamma$$ cannot occur without violating energy or momentum conservation. But that doesn't mean that electrons can't interact with anything! For example, scattering $$e + \gamma \to e + \gamma$$ is perfectly allowed. And a classical electromagnetic field is built out of many photons, so the interaction of an electron with such a field can be thought of as an interaction with many photons at once. There are plenty of ways a free electron can interact without violating energy or momentum conservation, so there's no problem here.
No comments:
Post a Comment