Tuesday, August 29, 2017

wavefunction collapse - How can two electrons repel if it's impossible for free electrons to absorb or emit energy?


There is no acceptable/viable mechanism for a free electron to absorb or emit energy, without violating energy or momentum conservation. So its wavefunction cannot collapse into becoming a particle, right? How do 2 free electrons repel each other then?



Answer




It is true that the reactions $$e + \gamma \to e, \quad e \to e + \gamma$$ cannot occur without violating energy or momentum conservation. But that doesn't mean that electrons can't interact with anything! For example, scattering $$e + \gamma \to e + \gamma$$ is perfectly allowed. And a classical electromagnetic field is built out of many photons, so the interaction of an electron with such a field can be thought of as an interaction with many photons at once. There are plenty of ways a free electron can interact without violating energy or momentum conservation, so there's no problem here.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...