Sunday, September 3, 2017

homework and exercises - Deriving commutation relations in second quantisation


I am trying to start from: \begin{align*} [\phi(x),\pi(x')] = i\hbar\delta(x-x') \\ [\phi(x),\phi(x')] = [\pi(x),\pi(x')]=0 \end{align*} to derive: \begin{align*} [a(k),a(k')^\dagger]=\delta_{kk'}\\ [a(k),a(k')]=[a(k)^\dagger,a(k')^\dagger]=0 \end{align*}


So starting with: \begin{align*} \phi(x) = \sum_k \left(\frac{\hbar c^2}{2\omega_k}\right)^\frac{1}{2}[a(k)u_k(x)+a(k)^\dagger u_k(x)^*] \end{align*} where $u_k(x) = \frac{1}{\sqrt{V}}e^{i(k \cdot x - \omega_k t)}$ and $\pi(x) = \frac{1}{c^2}\dot{\phi}(x)$ \begin{align*} &[\phi(x),\pi(x')] \\ &=-i\sum_{k,k'} \frac{\hbar}{2}\sqrt{\frac{\omega_k}{\omega_{k'}}}\left([a(k)^\dagger,a(k')]u_k(x)^*u_k(x')-[a(k),a(k')^\dagger]u_k(x)u_k(x')^*\right) \end{align*}


I'm not sure how to continue...




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...