Friday, November 17, 2017

Energy-momentum tensor of Bosonic Ghost Action in String Theory


When quantizing bosonic string theory by means of the path integral, one inverts the Faddeev-Popov determinant by going to Grassmann variables, yielding: Sghosts=i2πˆgbαβ^αcβd2τ, where the i/2π just comes from convention/Wick rotated or not. My first problem is the notion of the 'fudicial' metric ˆg. I find its role in the path integral procedure a bit confusing. What is its relation to the 'normal' metric g? Why is it introduced? Related to this confusion is that fact in my lecture notes it is said that the energy momentum tensor is given by: Tαβ:=1ˆgδSgδˆgαβ=i4π(bαγˆβcγ+bβγˆαcγcγγbαβgαβbγδγcδ), I have trouble deriving this. Varying the ˆg in the action yields the last term I would say: δˆg=12ˆgˆgαβδˆgαβ However, this term does not have a 'hat' on the covariant derivative, which I find strange. The first and second term follow easily when writing the action with all indices low (except for a factor of 1/2), but I really don't see where the third term comes from and it also misses a hat on the covariant derivative. It looks like there has been done a partial integration, but I don't see why. I guess I am missing the point of the fiducial metric here. Explanation greatly appreciated!


EDIT: In the discussion below I mentioned that bαβ is traceless: bαβgαβ=0, I forgot to place that here. It is a consequence of the path integral procedure.



Answer



Here's part of my answer to the derivvation of the EM tensor for the ghost action. It does not match the expression you gave, but I may have made a mistake. CAn you check my work?


We start with the action Sgh=i2πd2σggαμbαβμcβ Let us now vary the action w.r.t. metric. We get δSgh=i2πd2σ(δg)gαμbαβμcβ                 i2πd2σg(δgαμ)bαβμcβ                 i2πd2σggαμbαβδ(μcβ)=i4πd2σg[bαμβcμ+bβμαcμgαβbρσρcσ]δgαβ                 i2πd2σggαμbαβcλδΓβμλ We now use δΓβμλ=12gβρ[λδgρμ+μδgρλρδgμλ] Note that in particular, it is a tensor. The last term then becomes I=i2πd2σggαμbαβcλδΓβμλ=i4πd2σgbμρcλ[λδgρμ+μδgρλρδgμλ]=i4πd2σgbμρcλλδgρμ=i4πd2σgλ(bαβcλ)δgαβ We then have δSgh=i4πd2σg[bαμβcμ+bβμαcμgαβbρσρcσ+λ(bαβcλ)]δgαβ


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...