Sunday, August 12, 2018

newtonian mechanics - First and Second Moment of Mass


I recently came across the definition of the Center of Mass of a system as the point about which the first moment of mass is zero.


Further, it defined Moment of Inertia as the second moment of mass.


My question is, What is this 'moment of mass'?



Answer



Given some distribution or density ρ(x), a moment is the 'expectation value' of some power of xR. To be precise, the n-th moment Mn is given by Mn=Rxnρ(x)dx.

In the mechanics case, ρ(x) is simply the mass density.



You can extend this to vectors in Rd in a straightforward way; for example, for the moment of inertia you replace x2 by x2=x21+x2d to obtain I=M2=Rdx2ρ(x)ddx

which should match the definition given in your mechanics textbook.


For the first moment of mass, you need to distinguish different directions. As you indicate, you can choose your coordinates such that


Rdxiρ(x)ddx=0

where i runs over the coordinates. In three dimensions, you have x1=x,x2=y and x3=z.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...