Saturday, July 27, 2019

quantum mechanics - Non-relativistic limit of complex scalar field


In page 42 of David Tong's lectures on Quantum Field Theory, he says that one can also derive the Schrödinger Lagrangian by taking the non-relativistic limit of the (complex?) scalar field Lagrangian. And for that he uses the condition $\partial_{t} \Psi \ll m \Psi$, which in fact I suppose he means $|\partial_{t} \tilde{\Psi}| \ll |m \tilde{\Psi}|$, otherwise I don't get it. In any case, starting with the Lagrangian:


$$\mathcal{L}=\partial^{\mu}\tilde{\psi} \partial_{\mu} \tilde{\psi}^{*} -m^{2}\tilde{\psi}\tilde{\psi}^{*}$$


Using the inequation I think it's correct, I can only get to:


$$\mathcal{L}=-\nabla\tilde{\psi} \nabla \tilde{\psi}^{*} -m^{2}\tilde{\psi}\tilde{\psi}^{*}$$


And from that I've tried relating $\tilde{\psi}$ or $\psi$ (as we can write the above Lagrangian with both, as it's invariant under multiplying by a pure phase), to $\dot{\psi}$




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...