Peskin's QFT textbook
1.page 14
∫∞0dp psinpx e−it√p2+m2
when x2≫t2, how do I apply the method of stationary phase to get the book's answer.
2.page 27
∫∞−∞dpp eipr√p2+m2
where r>0
3.page 27
∫∞mdE√E2−m2e−iEt
where m>0
I'm crazy about these integrals, but the textbook doesn't give the progress.
Answer
1. Since x≫p, we see that sin(px) is highly oscillatory. In fact, the integral becomes
∫∞0dp psinpx e−it√p2+m2∼∫∞−∞dp p eipx−it√p2+m2
modulo some factor of ±2/i. Observe now this integral resembles ∫f(p)exp(g(p))dp. We find the point ˜p such that
g′(˜p)=0.
Then just replace g(p) with g(˜p)+12g″ and carry out the integral as a moment of a Gaussian. For more on this approximation, see e.g. the relevant chapter of Hunter and Nachtergaele's book (freely and legally available).
2. This is just a Fourier transform of p\,(p^{2}+m^{2})^{-1/2}.
3. I assume you are referring to Eq (2.51) on page 27. We write the integral as
I(t) = \int^{\infty}_{m}\sqrt{E^{2}-m^{2}}e^{-iEt}\,\mathrm{d}E.
Peskin and Schroeder consider this integral as t\to\infty. If we consider a change of variables to
E^{2}-m^{2}=\mu^{2}\quad\Longrightarrow\quad \mathrm{d}E = \frac{\mu}{\sqrt{m^{2}+\mu^{2}}}\mathrm{d}\mu
We have
\begin{align} I(t) &= \int^{\infty}_{0} \frac{\mu^{2}}{\sqrt{m^{2}+\mu^{2}}}e^{-it\sqrt{m^{2}+\mu^{2}}}\mathrm{d}\mu \\ &=\frac{1}{2}\int^{\infty}_{-\infty} \frac{\mu^{2}}{\sqrt{m^{2}+\mu^{2}}}e^{-it\sqrt{m^{2}+\mu^{2}}}\mathrm{d}\mu \end{align}
Let
f(\mu) = \frac{\mu^{2}}{\sqrt{m^{2}+\mu^{2}}},\quad\mbox{and}\quad \phi(\mu) = \sqrt{m^{2}+\mu^{2}}
so
I(t)=\frac{1}{2}\int^{\infty}_{-\infty}f(\mu)e^{-it\phi(\mu)}\mathrm{d}\mu.
Observe
f(\mu)=\mu\phi'(\mu).
As t\to\infty, the integral becomes highly oscillatory.
There are two ways to approach the problem from here. The first, unforgivably handwavy but faster: take the stationary phase approximation, and pretend that f(\mu_{\text{crit}}) is some arbitrary constant.
The critical points for \phi are \mu_{0}=0 and \mu_{\pm}=\pm im. We only care about the real \mu, so we Taylor expand about \mu_0 to second order:
\begin{align} \phi(\mu)&=\phi(0)+\frac{1}{2!}\phi''(0)\mu^{2}\\ &=m + \frac{1}{2m}\mu^{2} \end{align}
We now approximate the integral as
I(t) \sim \int^{\infty}_{-\infty}f(c)e^{-itm}e^{-it\mu^{2}/2m}\mathrm{d}\mu \approx f(c)e^{-itm}\sqrt{\frac{4\pi m}{t}}.\tag{1}
The other approximation doesn't fix f. Observe f(\mu)\sim|\mu|, so we have
I(t) \sim e^{-itm} \int^{\infty}_{0}\mu e^{-it\mu^{2}/2m}\mathrm{d}\mu.
We have (using Fresnel integrals)
\int^{\infty}_{0}\mu e^{-it\mu^{2}/2m}\mathrm{d}\mu\sim \frac{im}{t}.
Hence
I(t)\sim\frac{im}{t}e^{-imt}.\tag{2}
No comments:
Post a Comment