In many theories of CMT, we assume the nature of quasi-particles (without giving proper justifications). For example, we assume nature of quasi-particles to be fermionic in case of a interacting fermion system we began with and impose anti-commutation relations accordingly. Like in BCS theory, while using the Bogoliubov-Valatin transformation to diagonalize the Hamiltonian, we assume that the new operators are also fermionic in nature. Please explain more on this step and how is it justified.
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
I was solving the sample problems for my school's IQ society and there are some I don't get. Since all I get is a final score, I wan...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
-
500 are at my end, 500 are at my start, but at my heart there are only 5. The first letter and the first number make me complete: Some consi...
No comments:
Post a Comment