Tuesday, October 20, 2015

classical mechanics - In a four mass six spring vibration, how is the kinetic energy represented



This is from Hobson, Riley, Bence Mathematical Methods, p 322. A spring system is described as follows (they are floating in air like molecules):


enter image description here


The equilibrium positions of four equal masses M of a square with sides 2L are Rn=±Li±Lj and displacements from equilibrium are qn=xni+ynj. According to the text,



"The coordinates for the system are thus x1, y1, x2, . . . , y4 and the kinetic energy of matrix A is given trivially by MI8 where I8 is the 8x8 identity".



What does that mean? The velocity doesn't even appear. How does that relate to energy?



Answer



An engineer would call it the "mass matrix" not the "kinetic energy matrix". The KE is given by 12vTMv where v is the vector of the velocity components ˙x1,,˙x4,˙y1,,˙y4 and M=MI8 - i.e. an 8×8 diagonal matrix with all the diagonal terms equal to M.


"Kinetic energy matrix" seems a silly name IMO, because as you said it doesn't fully represent the kinetic energy of the system.



The "stiffness matrix" (or whatever the mathematicians who wrote your book call it!) can similarly be written as an 8×8 matrix K, though it's not so simple as the mass matrix. The potential energy stored in the springs is then given by 12xTKx


Reading a textbook or web page on matrix methods for modelling multi-degree-of-freedom (MDOF) systems, written for engineers or physicists rather than for mathematicians, might help to understand the basic ideas.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...