Friday, October 9, 2015

quantum mechanics - Separability of a Hilbert space and its implications for the formalism of QM


In the text I'm using for QM, one of the properties listed for Hilbert space that is a mystery to me is the property that it is separable. Quoted from text (N. Zettili: Quantum Mechanics: Concepts and Applications, p. 81):



There exists a Cauchy Sequence $\psi_{n} \ \epsilon \ H (n = 1, 2, ...)$ such that for every $\psi$ of $H$ and $\varepsilon > 0$, there exists at least one $\psi_{n}$ of the sequence for which $$ || \psi - \psi _{n} || < \varepsilon.$$



I'm having a very hard time deciphering what this exactly means. From my initial research, this is basically demonstrating that Hilbert space admits countable orthonormal bases.





  1. How does this fact follow from the above?




  2. And what exactly is the importance of having a countable orthonormal basis to the formalism of QM?




  3. What would be the implications if Hilbert space did not admit a countable orthonormal basis, for example?





Answer




I usually see it in the reverse way, but it is a matter of taste. Hilbert spaces, in general, can have bases of arbitrarily high cardinality. The specific one used on QM is, by construction, isomorphic to the space L2, the space of square-integrable functions. From there you can show that this particular Hilbert space is separable, because it is a theorem that a Hilbert space is separable if and only if it has a countable orthonormal basis, and L2 has one.


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...