Wednesday, January 20, 2016

cosmology - Is the Big Bang defined as before or after Inflation?


Is the Big Bang defined as before or after Inflation? Seems like a simple enough question to answer right? And if just yesterday I were to encounter this, I'd have given a definite answer. But I've been doing some reading while writing up my thesis and I'm finding conflicting definitions of the Big Bang.


Everyone agrees that in standard Big Bang cosmology, the Big Bang is defined as the singularity; the moment in time when the scale factor goes to zero. Okay, but when you include the theory of inflation, it gets a bit murky.


So here's what I mean by conflicting definitions. As an example, in The Primordial Density Perturbation by Lythe and Liddle, they define the Big Bang as the beginning of the era of attractive gravity after inflation. However, Modern Cosmology by Dodelson defines the Big Bang as coming before inflation; it effectively uses the old definition that the Big Bang is the moment when the scale factor approaches zero.


This contradiction is evident in multiple places. When doing a google search for it, one can find many persuasive explanations for both definitions. All definitions agree that we cannot any longer define it as the singularity where $a=0$. But every one makes sense in its own way and so, I become more and more confused about which is right the more of them I read.


The argument for the Big Bang coming after is that inflationary theory diverges from the standard Big Bang cosmology around $10^{-30}s$ before we'd expect to run into the singularity, when inflation ended, and that we have no evidence to anything coming before that, thus the big bang is now defined as the initial conditions for the hot, expanding universe that are set up by and at the end of inflation.



The argument for the Big Bang coming before seems to be that inflation is still a period where the scale factor grows and as such, the Big Bang can be defined as the closest value to zero (which is before inflation), or rather, the earliest time as the scale factor approaches zero. This essentially seems to be based on saying "well, we defined it as the moment when the scale factor was smallest before inflation was added. Why would we not continue to have that as the definition after inflation is added?"


The former argument has merit because it defines the start of the epoch where the universe is describable (practically) by the standard Big Bang cosmology. But the latter argument has merit because of its simplicity and that it uses the spirit of the original definition; the smallest scale factor and the moment when the expansion of the universe seems to begin.


Thus, my root question: Which definition is correct? Do we say the Big Bang came before or after inflation?


P.S. I realize that asking this here only serves to add one or more additional persuasive arguments to an already crowded debate. However, this is Physics.SE, so I figure whatever we decide here can be definitive. Even if we can't find a truly correct answer, this can set the record straight, or at least, firmly crooked.




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...