Sunday, February 14, 2016

quantum mechanics - Learn QM algebraic formulations and interpretations



I have a good undergrad knowledge of quantum mechanics, and I'm interesting in reading up more about interpretation and in particular things related to how QM emerges algebraically from some reasonable real world assumptions. However I want to avoid the meticulous maths style and rather read something more meant for physicists (where rigorous proofs aren't needed and things are well-behaved ;) ) I.e. I'd prefer more intuitive resources as opposed to the rigorous texts.


Can you recommend some reading to get started?



Answer



An excellent book which does more or less what you ask for is Asher Peres' "Quantum theory:concepts and methods". It starts from the Stern-Gerlach experiments and logical reasoning to develop the basic principles of quantum mechanics. From there, it develops the necessary algebra.


Another interesting book for an approach of the conceptual side of quantum mechanics is "Quantum Paradoxes" by Aharonov and Rohrlich. But to fully appreciate this one, I think you will need to go through a standard curriculum first.


Then, there is "Quantum computation and Quantum Information" by Nielsen and Chuang, which is meant as an introduction to the ideas of QM as applied to information theory for people with an informatics background mostly. So it also starts from an algebraic and conceptual approach.



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...