I'm trying to solve the two body problem numerically, setting up $G$, $m1$ and $m2$ to be equal to 1. then I located each mass on positions -5 and 5 respectively along the $x$ axis and gave them both 0 on the $y$ axis. I'm having trouble finding the initial conditions fitting for circular movement. Please help!
Answer
For common center (barycenter) orbits, the velocities will be \begin{align} v_1&=\sqrt{\frac{Gm_2r_2}{\left(r_1+r_2\right)^2}}\\ v_2&=\sqrt{\frac{Gm_1r_1}{\left(r_1+r_2\right)^2}} \end{align} which, since $m_1=m_2$ and $r_1=r_2$, will be the same value, $v\approx0.22$ for your values of $G,\,m,\,r$. Since you've placed the two objects along the $x$ axis, then you need to give them this velocity in the $\pm y$ direction and 0 in the $x$ direction (the positive/negative value being associated with the direction of motion of the particle).
You can see why with the below diagram from the Wikipedia entry on circular motion,
![]()
At any one of the four cardinal points, the velocity is purely in the tangential direction. For example, consider the top point; it is at $(x,y)=(0,1)$ with a velocity of $(v_x,\,v_y)=(-v,0)$. You can do the same analysis with the other 3 points. So rather than trying to determine a random $(x,y)$ point, you can simply use the cardinal points to set the positions and velocities.
No comments:
Post a Comment