Using Noether's theorem
\begin{equation} \partial_0 \int d^3x \left(\frac{\partial L}{\partial(\partial_0\Psi)} \delta \Psi \right) = 0 \end{equation}
we get three conserved quantites $Q_i$ from global $SU(2)$ symmetry, because the Lagrangian is invariant under infinitesimal transformations of the form $\delta \Psi = i a_i \sigma_i \Psi $. The conserved quantities that follow from the free doublet Lagrangian $L= i\bar{\Psi} \gamma_\mu \partial^\mu \Psi$ are therefore
\begin{align} Q_i&= i\bar{\Psi} \gamma_0 \sigma_i \Psi \notag \\ &= \begin{pmatrix} v_e \\ e \end{pmatrix}^\dagger \underbrace{\gamma_0 \gamma_0}_{{=1}} \sigma_i \begin{pmatrix} v_e \\ e \end{pmatrix} \end{align}
Why are the conserved quantities that follow from $i=1$ or $i=2$, never mentioned or used? For $i=1$ we have
\begin{align} Q_1&= \begin{pmatrix} v_e \\ e \end{pmatrix}^\dagger \sigma_1 \begin{pmatrix} v_e \\ e \end{pmatrix} \notag \\ &= \begin{pmatrix} v_e \\ e \end{pmatrix}^\dagger \begin{pmatrix} 0 & 1 \\1 & 0 \end{pmatrix} \begin{pmatrix} v_e \\ e \end{pmatrix} \notag \\ &= v_e^\dagger e + e^\dagger v_e \end{align}
or for $i=3$ we have
\begin{align} Q_3&= \begin{pmatrix} v_e \\ e \end{pmatrix}^\dagger \sigma_3 \begin{pmatrix} v_e \\ e \end{pmatrix} \notag \\ &= \begin{pmatrix} v_e \\ e \end{pmatrix}^\dagger \begin{pmatrix} 1 & 0 \\0& -1 \end{pmatrix} \begin{pmatrix} v_e \\ e \end{pmatrix} \notag \\ &= v_e^\dagger v_e - e^\dagger e \end{align}
which is the usually used third component of weak isospin.
No comments:
Post a Comment