Thursday, December 14, 2017

mathematical physics - Rigor in quantum field theory


Quantum field theory is a broad subject and has the reputation of using methods which are mathematically desiring. For example working with and subtracting infinities or the use of path integrals, which in general have no mathematical meaning (at least not yet) ect. My question is a little vague, but i am interested in hearing what is the status of rigor in QFT. What is known to be mathematically rigorous and consistent, what is known to be not rigorous? Any examples and references are welcome.


Added: Just to clarify by rigorous I meant anything that a mathematician would find satisfactory. Also my question wasn't for books with rigorous (in some sense) approach, although that was welcomed. It was about specific examples of what is considered mathematically satisfactory and what not. For example the quantization of free fields satisfying the Klein-Gordon equation can be done rigorously. There is no mathematical definition in general of the Feynman path integral and so on.




No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...