I have a problem where I have two massive Particles $M$ and one particle with mass $m This probably means to switch to new coordinates \begin{equation} y_1 = -q_1+q_2\\ y_2 = -\frac{1}{\sqrt{2}}q_1-\frac{1}{\sqrt{2}}q_2+q_3\\ y_3 = \frac{1}{\sqrt{2}}q_1+\frac{1}{\sqrt{2}}q_2+q_3 \end{equation} But what do I do with the momentum operators. They should change accordingly but I am confused as to how exactly
Sunday, December 31, 2017
quantum mechanics - Coupled Harmonic Oscillator - Solve by diagonalization
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
A charged particle undergoing an acceleration radiates photons. Let's consider a charge in a freely falling frame of reference. In such ...
-
You are visiting your old friend Mike at Infinitely's Baking Shop. Just as you arrived, he was taking out a fresh, infinitely long loaf ...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
No comments:
Post a Comment