I have one more s****d question in Polchinski's string theory book, Eqs. (2.3.14a)
jμ(z):eik⋅X(0,0): ∼ kμ2z:eik⋅X(0,0):,
where jμa=iα′∂aXμ, :: is normal ordered, defined as :Xμ(z,ˉz):=Xμ(z,ˉz)
:Xμ(z1,ˉz1)Xν(z2,ˉz2):=Xμ(z1,ˉz1)Xν(z2,ˉz2)+α′2ημνln|z12|2
. ∼ means equal up to nonsingular terms.
I thought I have derived it in analogy of integration by part, but it turns out that not as I thought. Actually how to derive Eq. (2.3.14a)? Eq.(2.3.14b) will be expected in analogous...
Answer
We can use :F::G:=exp(−α′2∫d2z1d2z2log|z12|2δδXμF(z1,ˉz1)δδXGμ(z2,ˉz2)):FG:
This gives :iα′∂Xμ(z)::eik⋅X(w,ˉw):=exp(−α′2∫d2z1d2z2log|z12|2δδXμF(z1,ˉz1)δδXGμ(z2,ˉz2)) :iα′∂Xμ(z)eik⋅X(w,ˉw):=:iα′∂Xμ(z)eik⋅X(w,ˉw): −i2:∫d2z1d2z2log|z12|2δ(∂Xμ(z))δXμF(z1,ˉz1)δ(eik⋅X(w,ˉw))δXGμ(z2,ˉz2):=:iα′∂Xμ(z)eik⋅X(w,ˉw): −i2:∫d2z1d2z2log|z12|2∂(δμαδ2(z1,z))ikαδ2(z2,w)eik⋅X(w,ˉw)=:iα′∂Xμ(z)eik⋅X(w,ˉw): +kμ2:∂(∫d2z1d2z2log|z12|2δ2(z1,z)δ2(z2,w)eik⋅X(w,ˉw)):=:iα′∂Xμ(z)eik⋅X(w,ˉw):+kμ2:∂(log|z−w|2eik⋅X(w,ˉw)):=:iα′∂Xμ(z)eik⋅X(w,ˉw):+kμ2(z−w):eik⋅X(w,ˉw):
Therefore :jμ(z)::eik⋅X(w,ˉw):∼kμ2(z−w):eik⋅X(w,ˉw):
No comments:
Post a Comment