Tuesday, May 22, 2018

homework and exercises - Identity of Operator Product Expansion (OPE)


I have one more s****d question in Polchinski's string theory book, Eqs. (2.3.14a)


jμ(z):eikX(0,0):  kμ2z:eikX(0,0):,


where jμa=iαaXμ, :: is normal ordered, defined as :Xμ(z,ˉz):=Xμ(z,ˉz)

:Xμ(z1,ˉz1)Xν(z2,ˉz2):=Xμ(z1,ˉz1)Xν(z2,ˉz2)+α2ημνln|z12|2
. means equal up to nonsingular terms.


I thought I have derived it in analogy of integration by part, but it turns out that not as I thought. Actually how to derive Eq. (2.3.14a)? Eq.(2.3.14b) will be expected in analogous...



Answer



We can use :F::G:=exp(α2d2z1d2z2log|z12|2δδXμF(z1,ˉz1)δδXGμ(z2,ˉz2)):FG:

This gives :iαXμ(z)::eikX(w,ˉw):=exp(α2d2z1d2z2log|z12|2δδXμF(z1,ˉz1)δδXGμ(z2,ˉz2))                                                     :iαXμ(z)eikX(w,ˉw):=:iαXμ(z)eikX(w,ˉw):                i2:d2z1d2z2log|z12|2δ(Xμ(z))δXμF(z1,ˉz1)δ(eikX(w,ˉw))δXGμ(z2,ˉz2):=:iαXμ(z)eikX(w,ˉw):     i2:d2z1d2z2log|z12|2(δμαδ2(z1,z))ikαδ2(z2,w)eikX(w,ˉw)=:iαXμ(z)eikX(w,ˉw):     +kμ2:(d2z1d2z2log|z12|2δ2(z1,z)δ2(z2,w)eikX(w,ˉw)):=:iαXμ(z)eikX(w,ˉw):+kμ2:(log|zw|2eikX(w,ˉw)):=:iαXμ(z)eikX(w,ˉw):+kμ2(zw):eikX(w,ˉw):
Therefore :jμ(z)::eikX(w,ˉw):∼kμ2(zw):eikX(w,ˉw):



No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...