In the second chapter of Peskin and Schroeder, An Introduction to Quantum Field Theory, it is said that the action is invariant if the Lagrangian density changes by a four-divergence. But if we calculate any change in Lagrangian density we observe that under the conditions of equation of motion being satisfied, it only changes by a four-divergence term.
If ${\cal L}(x) $ changes to $ {\cal L}(x) + \alpha \partial_\mu J^{\mu} (x) $ then action is invariant. But isn't this only in the case of extremization of action to obtain Euler-Lagrange equations.
Comparing this to $ \delta {\cal L}$
$$ \alpha \delta {\cal L} = \frac{\partial {\cal L}}{\partial \phi} (\alpha \delta \phi) + \frac{\partial {\cal L}}{\partial \partial_{\mu}\phi} \partial_{\mu}(\alpha \delta \phi) $$
$$= \alpha \partial_\mu \left(\frac{\partial {\cal L}}{\partial \partial_{\mu}\phi} \delta \phi \right) + \alpha \left[ \frac{\partial {\cal L}}{\partial \phi} - \partial_\mu \left(\frac{\partial {\cal L}}{\partial \partial_{\mu}\phi} \right) \right] \delta \phi. $$
Getting the second term to zero assuming application of equations of motion. Doesn't this imply that the noether's current itself is zero, rather than its derivative? That is:
$$J^{\mu} (x) = \frac{\partial {\cal L}}{\partial \partial_{\mu}\phi} \delta \phi .$$
I add that my doubt is why changing ${\cal L}$ by a four divergence term lead to invariance of action globally when that idea itself was derived while extremizing the action which I assume is a local extremization and not a global one.
No comments:
Post a Comment