Friday, August 3, 2018

quantum mechanics - Matrix representation for fermionic annihilation operator


My guess it should look something like this:


$ c_\sigma = (\left|0\right>\left<\uparrow\right|+\left|\downarrow\right>\left<\downarrow\uparrow\right|)\delta_{\sigma,\uparrow}+(\left|0\right>\left<\downarrow\right|+\left|\uparrow\right>\left<\downarrow\uparrow\right|)\delta_{\sigma,\downarrow}$


where $\delta$ is a Kronecker delta and states $\left|0\right>,\left|\downarrow\right>,\left|\uparrow\right>,\left|\downarrow\uparrow\right>$ are orthonormal.


Now it behaves like annihilation operator



$c_{\downarrow}\left|0\right>=\left|0\right>, c_{\uparrow}\left|0\right>=\left|0\right>$


$c_{\downarrow}\left|\downarrow\right>=\left|0\right>, c_{\uparrow}\left|\downarrow\right>=\left|0\right>$


$c_{\downarrow}\left|\downarrow\uparrow\right>=\left|\uparrow\right>, c_{\uparrow}\left|\downarrow\uparrow\right>=\left|\downarrow\right>$


but anticommutator for example $[c_{\uparrow},c_{\downarrow}]_+$ isn't zero.


Is it possible to define it like that (in terms of basis states)?



Answer



Main point: You should allow the possibility of sign factors appearing into the definition of the Hilbert space representation of fermionic operators, cf. fermionic Fock space.


In more detail, consider the CAR algebra


$$\tag{1} \{c_{\sigma}, c_{\tau}\}_+~=~0, \qquad \{c_{\sigma}, c^{\dagger}_{\tau}\}_+~=~\delta_{\sigma,\tau} {\bf 1}, \qquad\{c^{\dagger}_{\sigma}, c^{\dagger}_{\tau}\}_+~=~0, \qquad \sigma,\tau\in \{\uparrow,\downarrow\}. $$


Next define



$$\tag{2} c_{\sigma}\left|0\right>~:=~0, \qquad \left|\sigma\right>~:=~ c^{\dagger}_{\sigma}\left|0\right>, \qquad \left|\sigma\tau\right>~:=~ c^{\dagger}_{\sigma}\left|\tau\right>, \qquad \sigma,\tau\in \{\uparrow,\downarrow\}.$$


Note that these definitions imply that


$$\tag{3} \left|\sigma\tau\right> ~=~ -\left|\tau\sigma\right>, \qquad \sigma,\tau\in \{\uparrow,\downarrow\}.$$


In particular


$$\tag{4} \left|\sigma\sigma\right> ~=~ 0, \qquad \sigma\in \{\uparrow,\downarrow\}. $$


No comments:

Post a Comment

classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?

I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...