The electric force (Coulomb's law) on a point charge $Q_2$ due to $Q_2$: \begin{gather*} \mathbf{F}_{12}=\frac{Q_1Q_2}{4\pi\epsilon_0}\frac{\mathbf{r}_2-\mathbf{r}_1}{|\mathbf{r}_2-\mathbf{r}_1|^3} \end{gather*}
The seperation vector between the charges is $\mathbf{r}_{12}=\mathbf{r}_2-\mathbf{r}_1=(x_2-x_1)\hat{\textbf{i}}+(y_2-y_1)\hat{\textbf{j}}=(z_2-z_1)\hat{\textbf{k}} $.
Does this mean that the force is a vector field or just a vector?
Is the force a function of $\mathbf{r}_{12}$, so $\mathbf{F}_{12}=\mathbf{F}_{12}(\mathbf{r}_{12})$?
No comments:
Post a Comment