It is common to read that the lifetime of a virtual particle is given by the uncertainty relation: $$\tau \sim \frac{\hbar}{E}$$ on the premise that the virtual particle 'borrows energy'. This statement is infact wrong (at least I think it is) since energy is conserved in Feynmann diagrams and thus no energy needs to be borrowed. Given this, how do we actually determine the lifetime of a virtual particle, and why is it not just the same as the real particle?
Subscribe to:
Post Comments (Atom)
classical mechanics - Moment of a force about a given axis (Torque) - Scalar or vectorial?
I am studying Statics and saw that: The moment of a force about a given axis (or Torque) is defined by the equation: $M_X = (\vec r \times \...
-
Are C1, C2 and C3 connected in parallel, or C2, C3 in parallel and C1 in series with C23? Btw it appeared as a question in the basic physics...
-
I was solving the sample problems for my school's IQ society and there are some I don't get. Since all I get is a final score, I wan...
-
I have read the radiation chapter, where I have been introduced with the terms emissivity and absorptivity. emissivity tells about the abili...
No comments:
Post a Comment